Lightweight Cellular Metals with High Structural Efficiency

NATO Advanced Research Workshop, "Metallic Materials with High Structural Efficiency"

September 8-12, 2003 Kiyv, Ukraine

Capt. Wynn S. Sanders, Sc.D.
Project Leader, Nano and Amorphous Materials Research
Materials and Manufacturing Directorate
Air Force Research Laboratory

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Lightweight Cellular Metals with High Structural Efficiency					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
Nano and Amorph	ZATION NAME(S) AND AD ous Materials Resea rce Research Labor	rch Materials and I	Manufacturing	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016	otes 72., The original do	cument contains col	or images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LI				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 26	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

Introduction to Cellular Solids

Production of Cellular Metals

Behavior of Cellular Metals

Applications of Cellular Metals

Summary

What is a cellular solid?

 Interconnected network of solid struts or plates that form edges and faces of cell

- Relative Density
 - Density of foam divided by density of solid
- Can be produced from wide variety of materials
 - -Polymers, ceramics, metals, food

What is a cellular solid?

Natural Cellular Materials

Food Foams

Gibson & Ashby, 1997

Topology of Cellular Metals

Inco Limited

- Open-cell foam
- Closed-cell foam
- Hollow-sphere foam
- Periodic/optimized truss structures
 - Octet, pyramidal, tetrahedral, kagomé truss
- Hashin-Shtrikman Material

Wadley et. al., 2003

Honeycomb

Outline

Introduction to Cellular Solids

Production of Cellular Metals

Behavior of Cellular Metals

Applications of Cellular Metals

Summary

Open-Cell Foams:

Ashby et. al., 2000

Closed-Cell Foams:

Fraunhofer Foam Production starting materials

TiH₂ decomposes at 400°C $T_M = 660$ °C for aluminum Al, Zn, Pb, Ti foams

Alcan Al/SiC Foam Production

ALPORAS Foam Production

Hollow-Sphere Foams:

HOLLOW SPHERICAL POWDER SYNTHESIS

a) Slurry cast of hollow spheres

b) Hollow sphere metallization

Heat to evaporate solvent and binder, and decompose TiH₂

Ashby et. al., 2000

- Also produced via fluidized bed coating (ATECA) and mechanical forming/joining (Kaydon ITI)
- Joined using second phase (epoxy, solder) or diffusion bonding

Truss Structures:

Wadley et. al., 2003

Honeycomb Structures:

• Includes hexagonal, square, and triangular honeycomb

Wadley et. al., 2003 Wadley et. al., 2003

Outline

Introduction to Cellular Solids

Production of Cellular Metals

Behavior of Cellular Metals

Applications of Cellular Metals

Summary

Stochastic Foams: Models

[Gibson and Ashby, 1997]

[Simone and Gibson, 1998]

Stochastic Foams: Modulus and Strength

Stochastic Foams: Defects

Non-homogenous cells

Torn/fractured cell walls

Liquid Drainage

Curvature

Corrugation

Hollow-Sphere Foams: Analytical, experimental, and FEM analysis

Truss Structures:

Wadley et. al., 2003

Topology	Elastic Modulus	Shear Modulus	Compressive Strength	Min Shear Strength	Max Shear Strength
	(E_{33}/E_{s})	(G ₁₃ /E _s)	(σ ₃₃ /σ _y)	(τ/σ _y)	(τ/σ _y)
Hexagonal Honeycomb	$1.00(\rho/\rho_s)$	0.14(ρ/ρ _s)	$3.22(\rho/\rho_s)^{5/3}$ **	-	$1.61(\rho/\rho_{\rm S})^{5/3}$
Diamond Textile	$0.25(\rho/\rho_s)$	= :	0.78(ρ/ρ _s)*	-	$0.5(\rho/\rho_{s})^{*}$
Square Textile	$0.50(\rho/\rho_s)$.	0.56(ρ/ρ _s)*	-	0.08(ρ/ρ _s)*
Diamond Hollow Tube	$0.25(\rho/\rho_s)$	-	$0.47(\rho/\rho_{s})^{*}$	-	-
Square Hollow Tube	$0.50(\rho/\rho_s)$	- 0	0.90(ρ/ρ _s)*	-	-
Tetrahedral	$0.44(\rho/\rho_s)$	$0.11(\rho/\rho_{s})$	0.67(ρ/ρ _s)	$0.24(\rho/\rho_{s})$	$0.27(\rho/\rho_s)$
Pyramidal	$0.25(\rho/\rho_s)$	$0.13(\rho/\rho_s)$	$0.50(\rho/\rho_s)$	$0.25(\rho/\rho_{s})$	$0.35(\rho/\rho_{s})$
3D Kagome	0.44(ρ/ρ _s)	-	$0.73(\rho/\rho_{s})$	$0.21(\rho/\rho_{s})$	$0.21(\rho/\rho_s)$

(*Experimental Results) (** Plateau Stress)

Wadley et. al., 2003

A Comparison:

A Comparison: Drawback of honeycomb

- Pyramidal (304 SS)
- Tetrahedral (304 SS)
- * Diamond textile (304 SS)
- O Diamond hollow truss (304 SS)
- Diamond solid truss (304 SS)
- 0°/90° hollow truss (304 SS)
- 0°/90° solid truss (304 SS)
- Tetrahedral (Al6061-O)
- Bi-layer tetrahedral (Al6061-O)

Outline

Introduction to Cellular Solids

Production of Cellular Metals

Behavior of Cellular Metals

Applications of Cellular Metals

Summary

Cellular metals posses a unique set of properties

Lightweight Structures	Excellent stiffness to weight ratio when loaded in bending: attractive values of $E^{1/3}/\rho$, $E^{1/2}/\rho$, and $\sigma_y^{1/3}/\rho$ for panels, plates, beams, and columns.		
Sandwich Cores	Low density with good shear and fracture strength.		
Mechanical Damping	Damping capacity of metal foams is up to 10X larger than that of solid metals.		
Vibration Control	Cellular metal panels have higher natural vibration frequencies that solid sheet of the same mass per unit area.		
Acoustic Absorption	Reticulated structures (open porosity) have sound absorbing capacity.		
Thermal Management	Open-cell structures posses large surface area and high cell wall/strut conduction for exceptional heat transfer ability		
Energy Absorption	Cellular metals have exceptional ability to absorb energy at almost constant pressure: crash protection, blast protection		

Stiffness limited design at minimum weight

Messiah College

Heat Transfer Applications

Wadley et. al., 2003

Energy Absorption

Fleck et. al., 2002

NATO ARW 24

Outline

Introduction to Cellular Solids

Production of Cellular Metals

Behavior of Cellular Metals

Applications of Cellular Metals

Summary

Summary

- A range of cellular metals presented as a structural concept, independent of material properties
 - Stochastic foams, hollow-sphere foams, periodic trusses
- Cellular metals posses high structural efficiency that provides added benefits over a fully dense material
- Lightweight structure used in application will depend on manufacturability and cost of each process
- Range of properties of cellular metals allows multifunctional use beyond simple structural concepts
 - Allows for further weight savings

Nature has a magnificent way of achieving great structural feats using only limited resources!